Hands-on demo – Identify performance regressions with Azure Load Testing and GitHub Actions
To identify performance regressions with Azure Load Testing and GitHub Actions, you can integrate load testing into your CI/CD pipeline. This ensures performance metrics are evaluated with every change in code, helping catch regressions early.
Here goes a step-by-step guide to setup the performance regression testing in Azure Load Testing and GitHub Actions.
1. Prerequisites
Azure Load Testing resource in your Azure subscription.
JMeter script (
.jmx
) for your load test.GitHub repository integrated with your application.
Azure service principal with required permissions to interact with the Azure Load Testing resource.
2. Create an Azure Load Testing Resource
In the Azure Portal, navigate to Create a Resource > Load Testing.
Configure the resource and note the resource's details:
Resource Name
Resource Group
Region
3. Prepare Your JMeter Script
The script should define the test scenarios, such as endpoint requests, user load, and response time thresholds.
Example of a simple JMeter test plan:
xxxxxxxxxx
101<ThreadGroup>
2 <num_threads>10</num_threads>
3 <ramp_time>30</ramp_time>
4 <loop_count>1</loop_count>
5 <HTTPSamplerProxy>
6 <HTTPSamplerDomain>example.com</HTTPSamplerDomain>
7 <HTTPSamplerPath>/api/endpoint</HTTPSamplerPath>
8 <HTTPSamplerMethod>GET</HTTPSamplerMethod>
9 </HTTPSamplerProxy>
10</ThreadGroup>
Save this as load-test.jmx
.
4. Set Up GitHub Actions for Azure Load Testing
4.1 Add Azure Service Principal Credentials
In your GitHub repository, go to Settings > Secrets and Variables > Actions.
Add the following secrets:
AZURE_CLIENT_ID
(Service principal’s app ID)AZURE_TENANT_ID
(Azure AD tenant ID)AZURE_CLIENT_SECRET
(Service principal password)AZURE_SUBSCRIPTION_ID
(Subscription ID)LOAD_TEST_RESOURCE
(Name of your Azure Load Testing resource)LOAD_TEST_RESOURCE_GROUP
(Resource group name)
4.2 Create a GitHub Actions Workflow
Add a .github/workflows/load-testing.yml
file in your repository.
xxxxxxxxxx
391name Azure Load Testing
2on
3 push
4 branches
5 main
6 pull_request
7jobs
8 load-test
9 runs-on ubuntu-latest
10 steps
11name Checkout Code
12 uses actions/checkout@v3
13name Login to Azure
14 uses azure/login@v1
15 with
16 client-id $ secrets.AZURE_CLIENT_ID
17 tenant-id $ secrets.AZURE_TENANT_ID
18 client-secret $ secrets.AZURE_CLIENT_SECRET
19name Upload JMeter Script to Azure Load Testing
20 run
21 az load test upload-file \
22 --resource-group ${{ secrets.LOAD_TEST_RESOURCE_GROUP }} \
23 --resource-name ${{ secrets.LOAD_TEST_RESOURCE }} \
24 --file-path ./load-test.jmx \
25 --file-name load-test.jmx
26name Run Load Test
27 run
28 az load test run \
29 --resource-group ${{ secrets.LOAD_TEST_RESOURCE_GROUP }} \
30 --resource-name ${{ secrets.LOAD_TEST_RESOURCE }} \
31 --test-id my-test \
32 --test-name "GitHub Actions Load Test"
33name Check Test Results
34 run
35 results=$(az load test-run show \
36 --resource-group ${{ secrets.LOAD_TEST_RESOURCE_GROUP }} \
37 --resource-name ${{ secrets.LOAD_TEST_RESOURCE }} \
38 --test-run-id my-test)
39 echo $results
5. Workflow Details
Login to Azure: Authenticates using the service principal.
Upload JMeter Script: Uploads the load test definition (
.jmx
) to Azure Load Testing.Run the Test: Executes the test using the
az load test run
command.Check Results: Retrieves and prints the results of the load test.
6. Analyze Results for Performance Regressions
Use the Azure CLI or Azure Portal to view the results:
Response Time: Ensure response times meet your thresholds.
Error Rates: Check for increases in HTTP errors.
Throughput: Validate sustained request processing rates.
Set performance thresholds in your pipeline: Example: Fail the pipeline if the average response time exceeds 500ms or if the error rate is above 1%.
7. Example: Conditional Pass/Fail Based on Results
Add a step to analyze results and fail the workflow if thresholds are breached.
xxxxxxxxxx
111name Validate Test Results
2 run
3 results=$(az load test-run show \
4 --resource-group ${{ secrets.LOAD_TEST_RESOURCE_GROUP }} \
5 --resource-name ${{ secrets.LOAD_TEST_RESOURCE }} \
6 --test-run-id my-test)
7 avgResponseTime=$(echo $results | jq '.metrics.avgResponseTime')
8 if [ "$avgResponseTime" -gt 500 ]; then
9 echo "Average response time exceeded threshold. Failing workflow."
10 exit 1
11 fi
8. Monitor and Improve
Use Azure Monitor Logs and Application Insights for detailed telemetry.
Set up alerts for SLA breaches.
Continuously improve your application based on findings.
Summary
This integration ensures that performance regressions are detected automatically, helping maintain application quality and reliability. Feel free to write in comments and let me know if you need further help with specific steps.
Leave a Reply